Die Phasen Nb₃Ga₂, Ta₅Ga₃ und Ta₅Al₃B_x

Von

H. Holleck, W. Rieger, H. Nowotny und F. Benesovsky

Aus dem Institut für physikalische Chemie der Universität Wien und der Metallwerk Plansee AG. Reutte, Tirol

(Eingegangen am 27. Januar 1964)

Die Phasen Nb₃Ga₂, Ta₅Ga₃ und Ta₅Al₃B_x werden aus den Komponenten hergestellt. Nb₃Ga₂ kristallisiert im U₃Si₂-Typ, Ta₅Ga₃ hat Cr₅Br₃-Struktur (T 2) und Ta₅Al₃B_x ist mit Mn₅Si₃ (teilweise aufgefüllt) isotyp.

Im Verlaufe von Untersuchungen der Systeme von Übergangsmetallen mit Elementen der 3b-Gruppe wurden die Kombinationen: Nb-Ga, Ta-Ga sowie auch Nb-Al-B und Ta-Al-B studiert.

Die Herstellung der Gallide erfolgte, wie schon früher angegeben, durch Erhitzen der in Quarzampullen eingeschlossenen Komponenten auf etwa 950°C (300 Stdn.). Die verwendeten Ausgangsstoffe waren, wie folgt, charakterisiert: Niob mit 0.01% Fe, 0.01% Mo, 0.1% W, Ta-frei, 0.1% C, 0.4% O; Tantal mit 0.01% Fe, 0.01% Mo, 0.04% W, 0.03% Nb, 0.1% C, 0.4% O der Firma H. C. Starek, Goslar, sowie reines Gallium (Fluka); das eingesetzte Bor war 96proz. Die Legierungen: Nb—Al—B und Ta—Al—B wurden durch Heißpressen hergestellt und vor dem Homogenisieren, wie üblich, von der C-haltigen Außenzone befreit.

Nb₃Ga₂. Bei Ansätzen von Nb—Ga-Gemengen trat nach Glühen, wie angegeben, und erfolgtem Abkühlen im Ofen bei 30 und 40 At% Ga bevorzugt eine Phase auf, deren Pulverdiagramm Isotypie mit Ta₃Ga₂¹ und demgemäß mit der U₃Si₂-Struktur erkennen ließ. Die Auswertung einer Debye-Aufnahme in Tab. 1 zeigt genügende Übereinstimmung zwischen beobachteten und berechneten Intensitäten. Die Gitterkonstanten sind:

 $a = 6,922, \quad c = 3,500 \text{ Å}$

mit $c/a = 0.505_6$.

¹ H. Holleck, H. Nowotny und F. Benesovsky, Mh. Chem. 94, 841 (1963).

(hkl)	10 ⁴ • sin ² ⁶ berechnet	10 ⁴ - sin ² θ gefunden	Int. gef.	Int. ber.
(110)	547			2.0
(001)	1070			4.0
(200)	1094			1,0
(210)	1370	1403	SS	5,9
(111)	1620	1641	ss	10,1
(201)	2165	2.02		(70,2
(220)	2190	2196	st	37,8
(211)'	2440	2455	\mathbf{st}	224,8
(310)	2740	2761	st	103,9
(221)	3260	—	``	0,3
(320)	3560	3588	s	24,5
(311)	3805	3824	s	18,4
(002)	4280	4287	m^+	39,2
(400)	4380			2,5
(321)	4630	4667		8,4
(410)	4650	4007	m	26,3
(112)'	4827			0,2
(330)	4925	4948	s	20,7
(202)	5375	5401	s ⁻	0,1
(401)	5450			0,1
(420)	5470	5488	SS	7,6
(212)	5650			1,6
(411)	5720	5730	\mathbf{m}	32,0
(331)	5995	6005	m	69,1
(222)	6470	6462	s^+	19,6
(421)	6560	6562	s^+	5,1
(430)	6845			0,9
(312)	7020	7025	\mathbf{st}	79,6
(510)	7115	<u></u>		1,9
(322)	7832	7825	m	33,6
(431)	7915			6,5
(520)	7940			1,0
(511)	8190	8201	\mathbf{st}	59,9
(402)	8655	8657	s	5,4
(440)	8750	8751	s^+	28,5
(412)	8930	8929	\mathbf{m}^+	70,0
(521)	9010	9014	\mathbf{m}^+	89,1
(332)	9200	9203	\mathbf{m}^+	22,1
(530)	9300	9304	s	11.3

Tabelle 1. Auswertung einer Pulveraufnahme von Nb₃Ga₂ mit $CrK\alpha$ -Strahlung (ohne Fremdlinien)

Die Röntgendichte ist $\rho_{R\ddot{o}} = 8,28 \text{ g/cm}^3$. Ein Vergleich der Gitterparameter zwischen Nb₃Ga₂ und Ta₃Ga₂ steht mit der allgemeinen Beobachtung im Einklang, wonach die entsprechende Ta-Phase eine etwas kleinere Zelle besitzt. Der Parameter x_{Ga} ist sicherlich kleiner als

553

 x_{Ga} für U₃Si₂, während x_{Nb} wieder nahe bei 0,180 liegen dürfte. Die gleichen Werte gelten auch für Ta₃Ga₂*. Die Parameter, insbesondere $x_{\text{Ga}} = 0,38$ (Tab. 1) erheben nicht Anspruch auf hohe Genauigkeit. Bisher waren Boride, Aluminide, Silicide und Germanide bekannt, welche im U₃Si₂-Typ kristallisieren². Es ist möglich, daß die Phasen dieses Typs einen Unterschuß an Metametall bzw. Metalloid haben, wie dies bei der entsprechenden Ta—B-Phase beobachtet wird. In diesem Falle kann der Platz eines Ga₂-Paares entweder leer oder nur mit einem Ga-Atom in $\frac{1}{2}$ 00 und 0 $\frac{1}{2}$ besetzt sein.

Ta₅Ga₃. Bei Ansätzen im Gebiete zwischen 20 und 40 At% Ga wurde eine Kristallart beobachtet, deren Pulveraufnahme auf Isotypie mit der Cr₅B₃-Struktur (T 2) hinweist. Tab. 2 bringt die Übereinstimmung in den Intensitäten klar zum Ausdruck. Dabei wurden zum Vergleich die berechneten Intensitäten der etwa gleichstreuenden T 2-Phase im System: Mo—Si—B³ herangezogen. Die Gitterkonstanten von Ta₅Ga₃ sind:

 $a = 6{,}58_8,$ $c = 11{,}9_2 \text{ \AA}$ mit $c/a = 1{,}81.$

Die Röntgendichte errechnet sich zu: $\rho_{R5} = 14.3 \text{ g/cm}^3$. Auf die enge Verwandtschaft zwischen dem U₃Si₂-Typ und dem Cr₅B₃-Typ wurde bereits früher aufmerksam gemacht⁴. In Ta—Ga-Legierungen mit 25 At% Ga, die 100 Stdn. bei 1000°C in Quarzampullen geglüht wurden, ergab sich kein Anzeichen für die Existenz einer β -Wolfram-Phase. In dieser Probe tritt jedoch eine Phase auf, deren Pulverdiagramm sich tetragonal mit : a = 10,01, c = 5,14 Å und c/a = 0,514 indizieren läßt und kürzlich dem W₅Si₃-Typ zugeordnet wurde⁵.

Ta₅Al₃B_x. Während die Systeme: V—Si, Nb—Si und Ta—Si durch das Bestehen des sehr stabilen Silicides M₅Si₃ (M = Übergangsmetall) charakterisiert sind, scheinen derartige Phasen bei: V—Al, Nb—Al und Ta—Al zu fehlen. Es ist jedoch auf Grund der beobachteten Regelmäßigkeiten bei Metalloid-stabilisierten D 8₈-Phasen zu erwarten, daß ein Bor-Zusatz zu ternären Phasen in diesem Konzentrationsgebiet führt. Im System: Nb—Al—B besteht mindestens eine ternäre Phase, die in diesem Bereiche (50—55 At% Nb, 5—10 At% B, Rest Al) liegt; die genaue

^{*} Gegenüber den früheren Angaben sind die neu ermittelten Gitterkonstanten von Ta₃Ga₂ mit: a = 6,817 und c = 3,471 Å genauer.

² Vgl. H. Nowotny, Bull. Soc. Chim. France 1960, 1881.

³ H. Nowotny, E. Dimakopoulou und H. Kudielka, Mh. Chem. 88, 180 (1957).

⁴ E. Parthé, B. Lux und H. Nowotny, Mh. Chem. 86, 859 (1955).

⁵ E. I. Gladyschevsky, W. S. Telegus und W. Ja. Markiv, Kristallografia [russ.] 8, 921 (1963).

H. 2/1964]

(hkl)	$10^3 \cdot \sin^2 \theta$ berechnet	$10^{\circ} \cdot \sin^{\circ} \theta$ gefunden	Int. gef.	Int. ber. für Mo _s Si ₂ B (T2)
(002)	36,9			1,6
(110)	60,4			0,9
(112)	97,3	97,5	SS	44,8
(200)	120,6			5,9
(004)	147,5	147,7	SS	37,8
(202)	157,5			45,2)
(211)	161,2	161,0	m^+	167,2
(114)	207,2'	208,9	m	99,6'
(213)	235,1	235,0	sst	350,4
(220)	241,5	242,5	s	34,4
(105)	260,7	257,6	s	
(204)	268,1	269,9	m^+	120,8
(222)	278,4	279,2	s	8,2
(310)	302,0	303,0	st	178,0
(006)	332,0	333,9	m	49,6
(312)	339,0			7,3
(215)	382,5			18,7
(224)	389,0		-	3,0
(116)	392,4			and frames
(321)	401,8			5,8
(314)	449,5			8,4
(206)	452,6	452,9	SSS	0,5
(323)	475,5			8,3
(400)	483,0	482,6	SSS	15,8
(402)	502,0	·		
(411)	522,3	522,7	s^+	60,7
(330)	543,0	543, 6	s^+	43,1
(226)	573, 5	574,8	SS	25,5
(332)	580,0	579,9	88	28,6
(008)	590,0			45,7
(413)	596,0	596,0	\mathbf{m}^+	85,6
(217)	604,0			208,0]
(420)	604,0	604,0	m^+	62,6
(325)	623,0			$2,0^{'}$
(404)	630,5)			128,8
(316)	634,0∫	632,8	\mathbf{st}	137,8
(422)	$641,0^{'}$			9,8
(118)	650,4			0
(334)	690, 5	690, 5	\mathbf{st}	317,2
(208)	710,1	708,6	SS	
(415)	743,5			13,8
(424)	751,5			1,5
(431)	764,3			3,0
(510)	785,0			12,8
(406)	815,0	844,7	s-	48,0
(512)	882,0	822,7	ss	162,4
(228)	831,5	830,7	8	138,0

Tabelle 2. Auswertung einer Pulveraufnahme von Ta $_5$ Ga $_3$, CrK α -Strahlung

	(hkil)	$10^3 \cdot \sin^2 \theta$ beobachtet	$10^{\circ} \cdot \sin^{\circ} \theta$ berechnet	Int. gesch.	Int. ber. (für Hf ₅ Al ₂)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1120)	87,4	86,5	SS	1,8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(20\overline{2}0)$	116, 4	116,4	s	4,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(11\overline{2}1)$	134,3	133,1	s^+	6,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		140,3		ss	TaB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		168, 6		SSS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0002)	186,0	186,4	s, d, <i>K</i>	0,6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(21\overline{3}0)$	204,0	201,8	st, d, K	$6,2+\mathrm{TaB}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(10\overline{1}2)$	217,5	215,2	s+	5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		229,1		SSS	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		235,1		SSS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		239,5		SSS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(21\overline{3}1)$	249,3	248,4	\mathbf{st}	11,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(30\overline{3}0)$	260,7	259,5	\mathbf{s}^+	4,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(11\overline{2}2)$	273,0	272,9	\mathbf{st}	8,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· /	280,0		s	TaB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		312,7		SSS	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(22\overline{4}0)$	345,5	346,0	SSS	0,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	— ,	390,9		SSS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		409,7	_	s	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		420,1		SS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(30\overline{3}2)$	447.7	445.9	SS	0,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(40\bar{4}0)$	463,4	461.3	s-	0,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·····	484.3		ss	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(11\overline{2}3)$	505.2	505.9	s^-	0,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		526.2		SSS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(22\overline{4}2)$	531,4	532.4	m	3,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(32\overline{5}0)$	547,1	547,8	s	0,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(31\overline{42})$	560,0	561,2	s+	1,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(32\overline{3}1)$	593,7	594,4	\mathbf{ms}	2,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(4150)	605,7	605, 4	m	3,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(21\overline{3}3)$	621,8	621.2	m	3,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(40\overline{4}2)$	647,9	647,7	\mathbf{mst}	4,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· _ /	663,6		SS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	—	675,9	<u> </u>	s	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		688,7		\mathbf{mst}	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		708,9		s	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		726,2		s-, d	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0004)	746,3	745, 6	S	1,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(42\overline{6}0)$	806,5	807,2	\mathbf{m}	1,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(3361)	824,7	825,0	m, K	1,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(20\overline{2}4)$	861,5	860,9	\mathbf{s}^+	1,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(51\overline{6}0)$	894,0	893,7	\mathbf{s}^+	1,0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(50\overline{5}2)$	907,1	907,1	st, K	2,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(51\overline{6}1)$	939,8	940,8	m	2,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2134)	948,6	947,4	\mathbf{st}	3,5
$(32\overline{5}3)$ (3.1) (3.1)	(3362)	0.0 - 0	964,8	ant	1,7
	$(32\overline{5}3)$	900,8	967,2	SSU	3,1

Tabelle 3. Auswertung einer Pulveraufnahme von $Ta_5Al_3B_x$; CrK α -Strahlung (mit Fremdlinien)

K = Koinzidenz

Zusammensetzung dieser Kristallarten konnte aber noch nicht festgelegt werden, doch ist das Bestehen einer D 8_8 -Phase möglich. Dagegen ergab sich eindeutig, daß eine Legierung des Systems: Ta—Al—B mit einer Zusammensetzung von 45 At% Ta, 45 At% Al und 10 At% B (gemäß Ansatz) neben geringen Mengen an TaB die D 8_8 -Phase (Mn₅Si₃-Typ aufgefüllt) enthält. Der tatsächliche Al-Gehalt der Probe ist infolge des Al-Verlustes beim Heißpressen etwas niedriger. Die D 8_8 -Phase wurde außerdem auch bei etwas Ta-reicheren Ansätzen beobachtet.

Als Beweis für die Existenz dieser Kristallart dient Tab. 3, wobei die berechneten Intensitätswerte vom gleichstreuenden $Hf_5Al_3^6$ übernommen wurden. Man erkennt vollkommene Übereinstimmung.

Gitterparameter wurden zu:

$$a = 7,78_9$$

 $c = 5,30_5$ Å und

c/a = 0.681 ermittelt. Ein nennenswerter homogener Bereich scheint nicht zu bestehen. Interessant ist, daß eine Kohlenstoff-Stabilisierung der D 8₈-Phase im System: Ta—Al—C bisher nicht gelang. Dies mag mit der z. B. gegenüber Ta₅Ga₃C_x größeren Zelle zusammenhängen. Die D 8₈-Phase Ta₅Ga₃C_x, über die kürzlich erst berichtet wurde⁷, ist hinsichtlich der *a*-Achse merklich kleiner (~ 1,5%).

Die Phasen $Zr_5Al_3B_r$ und $Hf_5Al_3B_r$

Die Ta₅Al₃B_x entsprechenden D 8₈-Phasen wurden auch in den Dreistoffen: Zr—Al—B und Hf—Al—B gefunden; allerdings sind hier die analogen Verbindungen mit anderen Metalloiden als Stabilisator bereits bekannt; möglicherweise treten diese auch mit Sauerstoff auf. Im übrigen ist in diesem Falle deren Existenz als metastabile Phase im Zweistoff: Zr—Al und Hf—Al nicht auszuschließen⁸.

Eine genaue Auswertung der Daten soll später zusammen mit dem Aufbau von: M—Al—B-Systemen erfolgen. Hiebei sind die Kombinationen: V—Al—B, Nb—Al—B, Ta—Al—B und Cr—Al—B bemerkenswert, weil eine weite Mischphasenbildung der Diboride z. B. (Ta, Al)B₂ auftritt.

Die Arbeit wurde teilweise von dem US-Government unterstützt.

⁶ H. Boller, H. Nowotny und A. Wittmann, Mh. Chem. 91, 1174 (1960).

⁷ W. Jeitschko, H. Nowotny und F. Benesovsky, Mh. Chem. 94, 844 (1963).

 $^{^{8}}$ Vgl. O. Schob, H. Nowotny und F. Benesovsky, Planseeber. Pulvermetallurgie 10, 65 (1962).